Ir al contenido principal

Paolo Ruffini

Después de ver la regla de Ruffini en clase, alguien se ha preguntado, ¿y quién es Ruffini?

Lo presentamos:


Algo de su biografía:

Paolo Ruffini nació el 22 de septiembre de 1765 en Valentano, Estados Papales y murió el 10 de mayo de 1822 en Módena, actual Italia.
Fue un alumno destacado, y tras estudiar medicina, literatura y filosofía el italiano comenzó la carrera de matemáticas  cuyo título consiguió con tan sólo 22 años de edad.
En 1787 ingresó en el cuerpo de profesores de la Universidad de Módena, también consiguió la cátedra de matemática de la escuela militar de la misma ciudad.
En el ámbito de las matemáticas, Ruffini consiguió importantes avances; pero ha quedado asociado principalmente a la regla que permite, de un modo simple, encontrar el resultado de la división de un polinomio por un binomio de la forma (x - a)

Sus aportaciones a las matemáticas

  • Su principal aporte fue el intento de demostrar que las ecuaciones polinómicas de grado superior al cuarto son irresolubles por radicales.
  • Estableció las bases de la teoría de las transformaciones de ecuaciones.
  • Descubrió y formuló la regla del cálculo aproximado de las raíces de las ecuaciones.
  • regla de Ruffini.


Comentarios

Entradas populares de este blog

La espiral de Teodoro: trabajos del alumnado

¿A que han quedado chulos? Realizado por el alumnado de 3º ESO Académicas:

Circulo goniométrico

Para construir el círculo trigonométrico, que nos ayudará a calcular razones trigonométricas de cualquier ángulo, necesitaremos papel milimetrado de,al menos, 200 mm x 200mm. Trazaremos en el centro del papel milimetrado unos ejes de coordenadas, y con centro en éste, trazamos un círculo de radio 100mm (10 cuadritos de los medianos). A continuación, es fácil señalar los ángulos 0º, 30º, 45º, 60º, 90º (para estudiar sobre éstos las razones trigonométricas de los ángulos que pertenecen al primer cuadrante de la circunferencia) Nos ayudaremos con los ángulos que están en el cartabón (30º y 60º) y con los de la escuadra (45º) En nuestra aula lo hemos realizado por grupos de ángulos asociados, y para construirlos nos hemos ayudado con las definiciones de seno y coseno, utilizando la calculadora y "contando cuadritos" primero llevaremos 30º "contando cuadritos" : entre todos los miembros de nuestra clase hemos llegado a la conclusión que son 87 cuadritos a l

Números irracionales: La espiral de Teodoro

Como parte del estudio de los números irracionales, en 3º de ESO hemos profundizado en el estudio de todos aquellos que son raíces cuadradas no exactas, y tras ello, hemos buscado información sobre Pitágoras, sobre Hipaso de Metaponto y sobre Teodoro de Cirene.  ¿Que solo os suena Pitágoras? Pues ya es hora de conocer a más matemáticos: HIPASO DE METAPONTO Filósofo presocrático, miembro de la Escuela pitagórica. Nació en torno al año 500 a. C. en Metaponto, ciudad griega de la Magna Grecia situada en el Golfo de Tarento, al sur de lo que ahora es Italia. Fue este sabio griego quien probó la existencia de los números irracionales, en un momento en el que los pitagóricos pensaban que los números racionales podían describir toda la geometría del mundo. Hipaso de Metaponto habría roto la regla de silencio de los pitagóricos revelando en el mundo la existencia de estos nuevos números. Eso habría hecho que éstos lo expulsaran de la escuela y erigieran una tumba con su nombre, mostran