Ir al contenido principal

Concurso de matemáticas Pangea 2016


El sábado 23 de Abril se celebró en Málaga la ronda final del Concurso Pangea de Matemáticas en el que tuvimos 4 participantes:
  • de 1º de ESO, Elena y Antonio
  • de 2º de ESO, Pablo 
  • de 3º de ESO, Pilar
Esta final es a escala nacional. Se realizó el mismo test, pero en una sede propia en la capital de cada Comunidad Autónoma participante. Este año las Rondas Finales han tenido lugar en Valladolid, Madrid, Barcelona, Sevilla, Santander, Málaga, Vigo y Alicante.

Una vez se hagan públicos los resultados de la final, se invita a los mejores clasificados de España a la ceremonia de entrega de diplomas y premios que se celebrará en el Aula Magna de la Escuela Politécnica Superior de la Universidad CEU-Montepríncipe (Boadilla del Monte).
A esta ceremonia acudirán las 10 mejores calificaciones por cada curso a nivel nacional.
Además, los ganadores de las categorías de la ESO (1º, 2º, 3º y 4º) a escala nacional ganarán un viaje a la ciudad alemana donde se celebrará la Final Internacional del Concurso Pangea en el mes de junio. Allí se reunirán con los ganadores del concurso Pangea de otros países de Europa y serán reconocidos con la entrega de diplomas y medallas de Pangea Internacional. Además, los ganadores también realizarán otras actividades como visitas turísticas a la ciudad dónde se celebra la ceremonia. 



Comentarios

Entradas populares de este blog

La espiral de Teodoro: trabajos del alumnado

¿A que han quedado chulos? Realizado por el alumnado de 3º ESO Académicas:

Circulo goniométrico

Para construir el círculo trigonométrico, que nos ayudará a calcular razones trigonométricas de cualquier ángulo, necesitaremos papel milimetrado de,al menos, 200 mm x 200mm. Trazaremos en el centro del papel milimetrado unos ejes de coordenadas, y con centro en éste, trazamos un círculo de radio 100mm (10 cuadritos de los medianos). A continuación, es fácil señalar los ángulos 0º, 30º, 45º, 60º, 90º (para estudiar sobre éstos las razones trigonométricas de los ángulos que pertenecen al primer cuadrante de la circunferencia) Nos ayudaremos con los ángulos que están en el cartabón (30º y 60º) y con los de la escuadra (45º) En nuestra aula lo hemos realizado por grupos de ángulos asociados, y para construirlos nos hemos ayudado con las definiciones de seno y coseno, utilizando la calculadora y "contando cuadritos" primero llevaremos 30º "contando cuadritos" : entre todos los miembros de nuestra clase hemos llegado a la conclusión que son 87 cuadritos a l

Números irracionales: La espiral de Teodoro

Como parte del estudio de los números irracionales, en 3º de ESO hemos profundizado en el estudio de todos aquellos que son raíces cuadradas no exactas, y tras ello, hemos buscado información sobre Pitágoras, sobre Hipaso de Metaponto y sobre Teodoro de Cirene.  ¿Que solo os suena Pitágoras? Pues ya es hora de conocer a más matemáticos: HIPASO DE METAPONTO Filósofo presocrático, miembro de la Escuela pitagórica. Nació en torno al año 500 a. C. en Metaponto, ciudad griega de la Magna Grecia situada en el Golfo de Tarento, al sur de lo que ahora es Italia. Fue este sabio griego quien probó la existencia de los números irracionales, en un momento en el que los pitagóricos pensaban que los números racionales podían describir toda la geometría del mundo. Hipaso de Metaponto habría roto la regla de silencio de los pitagóricos revelando en el mundo la existencia de estos nuevos números. Eso habría hecho que éstos lo expulsaran de la escuela y erigieran una tumba con su nombre, mostran